Human breast milk suppresses the transcriptional regulation of IL-1 -induced NF- B signaling in human intestinal cells
نویسندگان
چکیده
Minekawa, Ryoko, Takashi Takeda, Masahiro Sakata, Masami Hayashi, Aki Isobe, Toshiya Yamamoto, Keiichi Tasaka, and Yuji Murata. Human breast milk suppresses the transcriptional regulation of IL-1 -induced NFB signaling in human intestinal cells. Am J Physiol Cell Physiol 287: C1404–C1411, 2004. First published June 30, 2004; doi:10.1152/ajpcell.00471.2003.—Neonatal necrotizing enterocolitis (NEC), which is a disease with a poor prognosis, is considered to be caused by the coincidence of intestinal ischemiareperfusion injury and systemic inflammation due to the colonization of pathogenic bacteria. Interleukin (IL)-8, a proinflammatory cytokine, plays an important role in the pathophysiology of NEC. It was recently reported that IL-1 activates the IL-8 gene by regulating the transcriptional nuclear factor B (NFB) signaling pathways in intestinal cells. The protective role of maternal milk in NEC pathogenesis has been reported in both human and animal studies. In this study, we show that human breast milk dramatically suppressed the IL-1 -induced activation of the IL-8 gene promoter by inhibiting the activation pathway of NFB. Moreover, we also show that human breast milk induced the production of I B . These results suggest that human breast milk could be protective and therapeutic in neonates with NEC by inhibiting the activation pathway of NFB.
منابع مشابه
Salidroside regulates the expressions of IL-6 and defensins in LPS-activated intestinal epithelial cells through NF-κB/MAPK and STAT3 pathways
Objective(s): To reveal the detailed mechanism underlying the functions of salidroside on the inflammation of intestinal epithelial cells during IBD.Materials and Methods: Quantitative real-time PCR was employed to assess the expression of IL-6, IL-10, and α-defensins 5 and 6. ELISA assay was performed to measure the secretion of IL-6 and IL-10. MTT assay was used to determine the cell viabilit...
متن کاملCatechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells
Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H₂O₂)-induce...
متن کاملP133: Targeting NF-Κb Signaling Pathway as Potential Therapeutic with Curcumin in Treatment of Multiple Sclerosis
Curcumin is active component of turmeric and isolated from the rhizome of turmeric, a phenolic natural product. One of inflammatory disease is multiple sclerosis, a multifocal chronic autoimmune inflammatory disease of the CNS, which is also known as a perivascular demyelinating disease. Studies have been shown that neuro-inflammation can have both harmful and beneficial effects on the neuronal...
متن کاملAnti-proliferative effect and apoptotic induction of sesquiterpene lactone parthenolide in a human breast cancer cell line
Parthenolide is a secondary metabolite, which naturally occurs in the feverfew plant and is responsible for its healing power. The potential of parthenolide in inhibition of cancer cell growth, alone or in combination with other anti-cancer therapeutics, have been studied in several laboratories. In this study, the effect of extracted parthenolide on the expression of seven pro-apoptotic genes,...
متن کاملThe effect of down-regulation of CCL5 on lipopolysaccharide-induced WI-38 fibroblast injury: a potential role for infantile pneumonia
Objective(s): Aberrant expression of CCL5 has been found in several kinds of inflammatory diseases, and the roles of CCL5 in these diseases have also been reported. However, the role of CCL5 in infantile pneumonia is still unclear. Thus, the function and acting mechanism of CCL5 in the in vitro model of infantile pneumonia were researched in this study. Materials and Methods: Human fetal lung f...
متن کامل